A comparative study of k-nearest neighbour techniques in crowd simulation

نویسندگان

  • Jordi L. Vermeulen
  • Arne Hillebrand
  • Roland Geraerts
چکیده

The k-nearest neighbour (kNN) problem appears in many different fields of computer science, such as computer animation and robotics. In crowd simulation, kNN queries are typically used by a collision-avoidance method to prevent unnecessary computations. Many different methods for finding these neighbours exist, but it is unclear which will work best in crowd simulations, an application which is characterised by low dimensionality and frequent change of the data points. We therefore compare several data structures for performing kNN queries. We find that the nanoflann implementation of a k-d tree offers the best performance by far on many different scenarios, processing 100,000 agents in about 35 milliseconds on a fast consumer PC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Personal Credit Score Prediction using Data Mining Algorithms (Case Study: Bank Customers)

Knowledge and information extraction from data is an age-old concept in scientific studies. In industrial decision-making processes, the application of this concept gives rise to data-mining opportunities. Personal credit scoring is an ever-vital tool for banking systems in order to manage and minimize the inherent risks of the financial sector, thus, the design and improvement of credit scorin...

متن کامل

A Comparative Study of Supervised Image Classification Algorithms for Satellite Images

Image classification is a complex information extraction technique. The objective of image classification is to identify the features occurring in an image and group similar features as clusters. The aim of this study is to compare some supervised image classification techniques .The techniques considered in this paper are Minimum Distance, k-Nearest Neighbour (KNN), Nearest Clustering Fuzzy C-...

متن کامل

Classifying Human Leg Motions with Uniaxial Piezoelectric Gyroscopes

This paper provides a comparative study on the different techniques of classifying human leg motions that are performed using two low-cost uniaxial piezoelectric gyroscopes worn on the leg. A number of feature sets, extracted from the raw inertial sensor data in different ways, are used in the classification process. The classification techniques implemented and compared in this study are: Baye...

متن کامل

A comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater

The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...

متن کامل

Nearest Neighbour Based Forecast Model for PM10 Forecasting: Individual and Combination Forecasting

Air quality forecasting using nearest neighbour technique provides an alternative to statistical and neural network models, which needs the information on predictor variables and understanding of underlying patterns in the data. k-nearest neighbour method of forecasting that does not assume any linear or nonlinear form of the data is used in this study to obtain the next step forecast of PM10 c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Visualization and Computer Animation

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2017